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EFFECT OF PERIODIC OSCILLATIONS OF VELOCITY AND DENSITY

OF A MEDIUM ON DISINTEGRATION OF LIQUID JETS*

By !. F. Dityakin and V. I. Yagodkin

In a number of problems connected with the disintegration of liquid

jets into drops (the atomization of liquids, the obtaining of emulsions,

the transition of laminar flow of a liquid to turbulent, and so forth),

considerable interest is attached to the study of the effect of the

fluctuations of the flow velocity, that arise as a consequence of vari-

ous causes, on the stability of the flows under consideration. It is

of interest also to estimate theoretically the effect of density

fluctuations of the gaseous medium surrounding the liquid jet on the

disimtegration of the jet. These fluctuations occur, for example, in

the combustion chambers of liquid fuel jet engines and may change the

conditions of the work process.

A theoretical investigation is presented of the effect of velocity

and density fluctuations of the medium surrounding a cylindrical liquid

jet on the disintegration of the jet. For the solution the method of

small disturbances is applied.

It is shown that: (I) with fluctuations of the flow velocity of

the liquid and of the density of the medium there is a change in the

character and in the wave length of the unstable perturbations and in-

stead of a single region (characteristic in the absence of fluctuations),

an infinite number of separate unstable disturbances arise, (2) the

optimum wave length is less than that for the case of absence of

fluctuations, that is, the fluctuations of the flow velocity and of the

density of the medium lead to a decrease in the droplet dimensions ob-

tained in the jet disintegration, and (S) the obtained results of the

theoretical analysis are qualitatively confirmed by the available ex-

perimental data.

We shall consider the stability of a circular cylindrical liquid

jet. We choose a system of coordinates in which the jet is stationary

while the surrounding medium moves with velocity U. The jet density

*"Vliyanie periodicheskikh kolebanii skorosti i plotnosti sredy

na raspad zhidkikh struy." Akad. Nauk SSSR, Otdel. Tekh. Nauk, no. A,

i9S7, pp. IIS-120.
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and the density of the surrounding mediumare denoted by Pl and 02_
respectively. It is assumedthat the velocity U and the density P2
are periodic functions of the time. The fluids are assumedto be ideal
and to possess potential flows.

i. The equation of the velocity potential in a cylindrical system
of coordinates (r,_,z) is

82_ 1 8_ 1 82_ 820
-- + + 2 + --;7 = 0 (i.i)
_r 2 _ r 8_2 8z,_,

As is known (refs. i and 2) the following boundary conditions are
satisfied on the surface of the liquid jet:

(a) The normal velocities are equal (for r = a):

8_2 8_1
_t + _z u =Y_ -, _t ::: 8T (1.2)

where _ is the radial perturbation of the jet surface and the sub-

scripts i and 2 refer to the jet and the medium, respectively.

(b) The difference of the pressures in tile jet and medium is equal

to the pressure of the surface tension

Pl - P2 = -T + a-T S--2 8z2]

where T is the surface tension coefficient, and Pl and P2 the

pressures for the perturbed motion, determinel by the Lagrange-Cauchy

integral

pl : p2 : + T-z (1.4)

Solving equation (i.i) for the jet and t_e medium by the method of

separation of variables we obtain

@i : A(t)Im( kr)eimg+ikz' @2 = B(;)Km( kr)eim_+ikz (I.S)

where A(t) and B(t) are functions of time, k = 2_/_ the wave number,

the length of the perturbation wave, propagated along the z-axisj

m the number of waves over the circumference of the jet cross-section,

and Im and K m Bessel functions of imaginary argument of order m.
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The radial perturbation of the surface from the initial position

of the undisturbed jet may be presented in the form

= _e imq>_ikz (1.6)

Substituting expressions (i.¢)_ (1.5) and (1.6) in the boundary

conditions (1.2) and (i. 3) we obtain

_' = A(t)I_(ka), _' + ikU_ = B(t)K_(ka)

- pl A' (t)Im(ka) + p2B' (t)Km(ka) + P2ikUB(t)Km(ka)

= 4 T(k2a2 + m2 - l) (1.7)
a"

where

I_(ka) = d im(kr) ' K_(ka) = d_-_ Km(kr) for

Eliminating from this system the functions

ducing the nondimensional magnitudes

P2 . _ P_-_Ia

M = _i _ _ = ka, L = U_-_--,

we obtain the equation for _(T)

r = a

A and B and intro-

: (l.s)
ia3

_"(_- I) + 2i_' - [_2m2K + _(_2+ m2 _ l) - i_'_]-_--0

where

(1.9)

u" + Ju = 0

We reduce equation (1.9) to the normal form

and I_ and K_ are derivatives of the Bessel functions with respect

to _.

Im(_) _m(_)
I = i_-_ _ K = _ (l. 10)



where

V = _ 4\f/ - :_T]/
(i. ii)

J is the invariant of the differential equation, while

f = MK - I_ g = ?ic_iK

h = -[_2ML2K + _(_2 + m 2 _ I)] + ic_'K

(i. 12)

Thus

/ M_, dz 1u(_) -- _(_) e_p _ _- I

J - (MK ! !)_[_2ML2KI _ _(_2 + m 2 _ i)(_ - I) + ic_KIM'I] (i. 13)

We shall consider separately the effect (if the fluctuations of the

velocity and density of the medium on the st_.ility of the liquid jet

with respect to small perturbations.

2. Let us consider the effect of the osc:llations of the flow

velocity (i.e., of the parameter L), on the disintegration of the jet,

assuming the density of the medium to be constant (M = constant).

We present the nondimensional velocity L in the form

L = Loll + _,(_)] = _--f-} (2. i)

where _ is a periodic function of period 2:L, d the relative ampli-

tude of the velocity oscillations of the medi!un_ which we assume small

in comparison with unity_ v the nondimensiom_l frequency of the super-

posed oscillationsj and 6o the circular freqlency. We then obtain

from equation (i. IS)

f )u(T)= _- f L

J = (MK 1- I) [cI'2MKIL2° - _((:I'2 + m2 - 1)(MK - I) + 2c_2MKIL2o¢$(vT)]

(2.2)

Putting vT = x we reduce equation (1.9) to the form

u"+ [_ + _(x)]u : o (2.3)

I
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Equation (2.3) is a Hill equation.

equation (ref. 3) has the form

The general solution for this

U = OleZX_(x) + C2e-PX_(-x) (2.s)

where 9(x) is a periodic function, Z a characteristic exponent de-

pending on the parameters _ and y and determining the character of
the solution. The solutions of interest to us (increasing with time)

correspond to Re[z] >0.

l_t us first consider the very simple impulsive oscillations of

the form

1
(2.6)

In this case, the solution of equation (2.3) is expressed in terms

of trigonometric functions, while the exponent Z is computed by the

formula (ref. 4)

I_ xl X2_sin xlsin x 2 (2.7)
ch 2_ = cos XlCOS x 2 2\x2 + Xl_

where

xI = _ + T

x 2 = _-V_ - T

With the aid of this equation it is possible to construct the

boundary curves between the regions of stable and unstable solutions

corresponding to ch 2_ = ± i. In figure i these curves have been con-

structed in the coordinates _ and y and the regions are shown cor-

responding to the stable solutions (hatched areas).

The parameters 1 and _ of the Hill equation depend, in this

case, on both the magnitudes M, Lo, m, v, _ and on the wave number _.

Eliminating the magnitude _ from equations (2.4) we construct the

curve _(y) for the chosen values of the preceding parameters (fig. I).
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The curve _(y) starts from the origin and successively intersects

all regions of instability. With increasing distance from the origin

all increasing values of the wave numbers _ correspond to points of
the curve.

In order to investigate the effect of t]le velocity oscillations of

the medium (or of the outflow velocity of th_ liquid) it is necessary

to construct the curves of dependence of the increment of the oscilla-

tions of the perturbed motions on the wave mnnber of the regions of un-

stable (increasing) oscillations.

Since with an accuracy up to a periodic factor

_ u _ e_x = e_vx (s.s)

the increment of the oscillations will be equal to

z = (2.9)

In figure 2 the curves Z(_) are constructed for two oscillation

frequencies v (0.6 and 2) for values of the parameters M = 10 -3 ,

m = 0, Lo = 40, and _ = 0.4. The curve Z(_) is also constructed for

the case of absence of velocity oscillations (_ = 0).

As we see, this curve for _ = 0 posse_ses a maximum at _ _ 1.5.

In accordance with the Raleigh hypothesis (r_fs. i and 2) the wave

length of the most unstable disturbance is d,_termined by the drop
diameter.

In superimposing velocity oscillations !;he character of the dis-

integration of the jet changes as follows: _ large (in principle in-

finitely large) number of regions of instabi_.ity in the coordinates

and _ appears. Each of these regions h_Ls a definite range of wave

numbers (wave lengths) and a value of the ma::imum increment of

oscillations Z.

If we assume that the dimension of the c_ops (formed as a result

of the disintegration of the jet) is determi1_ed by the wave length cor-

responding to the maximum value of the increi1ent over all regions of

instability_ then the dimensions of the drops; decrease in the case of

oscillations of the flow velocity (fig. 2).

Experimental data are available on the _ffect of the flow velocity

oscillations on the liquid jet (ref. 6). It was found that these

oscillations lead to a decrease in the drop dimensions_ the mean diam-

eter of the drops under the conditions of the experiment decreased

approximately by one-half.

!
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These experiments therefore qualitatively confirm the preceding

theoretically derived conclusion.

Within the limits of the chosen magnitudes of the parameters the

change of frequency of the oscillations v causes a redistribution of

the regions of instability with respect to the wave numbers (wave

lengths)_ at the same time the magnitude of the maximum increment of

the oscillations practically does not change.

3. We now proceed to investigate the effect of the density fluc-

tuations of the medium (the magnitude M) on the disintegration of the

jet, assuming the flow velocity to be constant (L = constant).

We shall here assume that the magnitude M is a harmonic function

of the time

M = Mo(1 + _ cos vT) (3.i)

where 5 is the amplitude.

From equations (1.12) and (1.13) we obtain expressions for the

invariant of the differential equation (vT = 2x)

J(x) = e0 - 2elCOS 2x - 2i92sin 2x (3.2)

where

[_ZMoT2KI_ _(_2 + m2 i)(_< - I)]
% --2(%_ _ i)2

2M°K_5 _21(i- 2KMo)+ (co2 m2 I)(KM 0 - I)_(Z. 3)
_!---_2(_-f7 i)3 + -

_(MoK-I)2

Equation (1.9) then assumes the form of a Hill equation

u" + (a0 - 2elCOS 2x - 2ia2sin 2x)u = 0 (3.4)

This solution can likewise be presented in the form of equation

(2.3).
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Comparin_these curves we see that for -;he samevalues of the
parameters H and L. ['requenckiesand am_li ,udes_ the curves charac-

terizin_i the density oscillatiorls of the reed:urn is more steep. As is

showT_ by computatioms_ the curves _ = const_,nt in each tel]ion oF in-

stability o2' ti_e dLa_iram (fic. IS) are such tl:at with ffncreasin< distance

from the origin on the a-axis_ the mai_Htude: of the ex!_onent Z in-

crease. This means t}_at for t}le same conditfons the values of the in-

cre'.'tents Z in the case of density osci!lat-ons of the medi_r_ will in

absolute value be less than the values for ti"e case or the flow velocity
osc Ll!ations.

It follows that the densitL_ osci!lation_ of the medLzm surrounding:

the liquid jet have less effect on the disinlegration of the jet than

t}_e osciilatLons of the flow velocity. If t?e curve Z(_)_ similar to

b!_e curve i_z figure 2_ is constructed for th_s case the same effect of

t}ze density' oscillations can be qualitativel5 established as that which

holds for the velocity oscillations.

_,_7_epreced]ni< conclusions derived on the effect of the density

oscillations of the medLml are confirmed by the experiments pu101Jshed
in reference 7.
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